Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.048
Filtrar
1.
Sci Total Environ ; 927: 172385, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604354

RESUMO

Globally, more than half of the world's regions and populations inhabit psychrophilic and seasonally cold environments. Lower temperatures can inhibit the metabolic activity of microorganisms, thereby restricting the application of traditional biological treatment technologies. Bioelectrochemical systems (BES), which combine electrochemistry and biocatalysis, can enhance the resistance of microorganisms to unfavorable environments through electrical stimulation, thus showing promising applications in low-temperature environments. In this review, we focus on the potential application of BES in such environments, given the relatively limited research in this area due to temperature limitations. We select microbial fuel cells (MFC), microbial electrolytic cells (MEC), and microbial electrosynthesis cells (MES) as the objects of analysis and compare their operational mechanisms and application fields. MFC mainly utilizes the redox potential of microorganisms during substance metabolism to generate electricity, while MEC and MES promote the degradation of refractory substances by augmenting the electrode potential with an applied voltage. Subsequently, we summarize and discuss the application of these three types of BES in low-temperature environments. MFC can be employed for environmental remediation as well as for biosensors to monitor environmental quality, while MEC and MES are primarily intended for hydrogen and methane production. Additionally, we explore the influencing factors for the application of BES in low-temperature environments, including operational parameters, electrodes and membranes, external voltage, oxygen intervention, and reaction devices. Finally, the technical, economic, and environmental feasibility analyses reveal that the application of BES in low-temperature environments has great potential for development.


Assuntos
Fontes de Energia Bioelétrica , Temperatura Baixa , Técnicas Eletroquímicas/métodos , Recuperação e Remediação Ambiental/métodos
2.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582122

RESUMO

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Proteínas de Fímbrias , Geobacter , Geobacter/fisiologia , Geobacter/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/metabolismo , Fontes de Energia Bioelétrica
3.
Sci Total Environ ; 927: 172402, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608888

RESUMO

Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.


Assuntos
Fontes de Energia Bioelétrica , Metagenômica , Nanotubos de Carbono , Tolueno , Tolueno/metabolismo , Compostos de Anilina , Biodegradação Ambiental , Eletricidade , Pseudomonas/metabolismo , Pseudomonas/genética , Eletrodos
4.
Biosensors (Basel) ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534245

RESUMO

This paper describes the study of an amperometric glucose biosensor based on an enzymatic biofuel cell consisting of a bioanode and a biocathode modified with the same enzyme-glucose oxidase (GOx). A graphite rod electrode (GRE) was electrochemically modified with a layer of Prussian blue (PB) nanoparticles embedded in a poly(pyrrole-2-carboxylic acid) (PPCA) shell, and an additional layer of PPCA and was used as the cathode. A GRE modified with a nanocomposite composed of poly(1,10-phenanthroline-5,6-dione) (PPD) and gold nanoparticles (AuNPs) entrapped in a PPCA shell was used as an anode. Both electrodes were modified with GOx by covalently bonding the enzyme to the carboxyl groups of PPCA. The developed biosensor exhibited a wide linear range of 0.15-124.00 mM with an R2 of 0.9998 and a sensitivity of 0.16 µA/mM. The limit of detection (LOD) and quantification (LOQ) were found to be 0.07 and 0.23 mM, respectively. The biosensor demonstrated exceptional selectivity to glucose and operational stability throughout 35 days, as well as good reproducibility, repeatability, and anti-interference ability towards common interfering substances. The studies on human serum demonstrate the ability of the newly designed biosensor to determine glucose in complex real samples at clinically relevant concentrations.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Glucose , Ouro/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Enzimas Imobilizadas/química , Glucose Oxidase/química , Eletrodos
5.
Sci Total Environ ; 924: 171557, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460704

RESUMO

Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Animais , Suínos , Estudos Prospectivos , Reatores Biológicos , Tecnologia
6.
Bioprocess Biosyst Eng ; 47(4): 509-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492005

RESUMO

Plant microbial fuel cells (PMFCs) has important value for soil remediation and power generation. To improve the performance of PMFCs, a PMFC experimental system was established based on potted scindapsus aureus. Polyaniline (PANI) and sodium alginate (SA) were used as modifiers to prepare PANI-SA modified carbon felt anode. The soil remediation ability and electricity generation ability of PMFCs with four different anodes were compared and analyzed. The experimental results show that the steady-state voltage, the removal rate of hexavalent chromium, and the total chromium removal rate of PMFC using PANI-SA modified anode were 5.25 mV, 98%, and 90%, respectively, which are 253%, 10.4%, and 10% higher than those of PMFCs using unmodified carbon felt anode. PMFC is effective and feasible for removing soil chromium pollution and achieving efficient soil remediation, while modifying anodes with PANI-SA can further improve the soil remediation and electricity generation capabilities of PMFC.


Assuntos
Compostos de Anilina , Fontes de Energia Bioelétrica , Fibra de Carbono , Solo , Carbono , Eletrodos , Cromo , Plantas
7.
Bioresour Technol ; 399: 130555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460556

RESUMO

The CO2 fixation mechanism by Alcaligenes faecalis ZS-1 in a biocathode microbial fuel cell (MFC) was investigated. The closed-circuit MFC (CM) exhibited a significantly higher CO2 fixation rate (10.7%) compared to the open-circuit MFC (OC) (2.0%), indicating that bioelectricity enhances CO2 capture efficiency. During the inward extracellular electron transfer (EET) process, riboflavin concentration increased in the supernatant while cytochrome levels decreased. Genome sequencing revealed diverse metabolic pathways for CO2 fixation in strain ZS-1, with potential dominance of rTCA and C4 pathways under electrotrophic conditions as evidenced by significant upregulation of the ppc gene. Differential metabolite analysis using LC-MS demonstrated that CM promoted upregulation of various lipid metabolites. These findings collectively highlight that ZS-1 simultaneously generated electricity and fixed CO2 and that the ppc associated with bioelectricity played a critical role in CO2 capture. In conclusion, bioelectricity resulted in a significant enhancement in the efficiency of CO2 fixation and lipid production.


Assuntos
Alcaligenes faecalis , Fontes de Energia Bioelétrica , Dióxido de Carbono , Alcaligenes faecalis/genética , Eletrodos , Eletricidade , Lipídeos
8.
J Colloid Interface Sci ; 664: 309-318, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479267

RESUMO

Although lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET. Consequently, the as-prepared FeMn/CMM@CC anode displayed accumulated charge of 131.4C/m2, higher than bare CC. Meanwhile, FeMn/CMM@CC anode substantially promoted flavin excretion and the amounts of nano conduits. The abundance of Geobacter was 63 % on bare CC, and greatly increased to 83 % on FeMn/CMM@CC. MFCs equipped by FeMn/CMM@CC anode presented the power density of 3.06 W/m2 and coulombic efficiency (29.9 %), evidently higher than bare CC (1.29 W/m2, 7.3 %), and the daily chemical oxygen demand (COD) removal amount also increased to 92.6 mg/L/d. This work developed a facile method to optimize the abiotic-biotic interface by introducing 3D conductive and capacitive network, which was proved to be a promising strategy to modify macro-porous electrodes.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Elétrons , Condutividade Elétrica , Carbono/química , Transporte de Elétrons , Eletrodos , Eletricidade
9.
Chemosphere ; 354: 141667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485002

RESUMO

The rapid development of the economy has led to an increase in the sulfur and nitrogen load in surface water, which has the potential to cause river eutrophication and the emission of malodorous gases. A lab-scale sediment microbial fuel cell coupled with Vallisneria natans (P-SMFC) was designed for surface water remediation. The enhancement of pollutant removal performance of P-SMFC was evaluated in contrast to the SMFC system without plants (SMFC), the open-circuit control system with plants (C-P), and the open-circuit control system without plants (C-S), while illustrating the mechanisms of the sulfur and nitrogen transformation process. The results demonstrated that the effluent and sediment of P-SMFC had lower concentrations of sulfide compared to other systems. Furthermore, P-SMFC exhibited higher removal efficiency for COD (73.1 ± 8.7%), NH4+-N (80.5 ± 19.8%), and NO3--N (88.5 ± 11.8%) compared to other systems. The closed-circuit conditions and growth of Vallisneria natans create a favorable ecological niche for functional microorganisms involved in power generation, sulfur oxidation, and nitrogen transformation. Additionally, metagenomic analysis revealed that multifunctional bacteria possessing both denitrification and sulfur oxidation genes, such as Thiobacillus, Dechloromonas, and Bacillus, may play simultaneous roles in metabolizing sulfur and nitrogen, thus serving as integral factors in maintaining the performance of P-SMFC. In summary, these findings provide a theoretical reference for the concurrent enhancement of sulfur and nitrogen pollutants removal in P-SMFC and will facilitate its practical application in the remediation of contaminated surface water.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Nitrogênio/metabolismo , Sedimentos Geológicos/química , Água/química , Enxofre , Desnitrificação
10.
J Hazard Mater ; 469: 134007, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490150

RESUMO

Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.


Assuntos
Ácidos Alcanossulfônicos , Fontes de Energia Bioelétrica , Purificação da Água , Cobalto , Elétrons , Biofilmes , Eletrodos , Íons
11.
Chemosphere ; 354: 141754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508464

RESUMO

The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Fenol , Fenóis , Eletrodos
12.
Environ Sci Pollut Res Int ; 31(16): 23647-23663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427169

RESUMO

Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Cálcio , Humanos , Eletricidade , Áreas Alagadas , Ecossistema , Cobre , Óxidos , Eletrodos , Bactérias
13.
J Environ Manage ; 355: 120465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447510

RESUMO

Microbial fuel cells (MFCs) present a promising solution for wastewater treatment with the added benefits of energy generation, less sludge production and less energy consumption. MFCs have demonstrated high efficiency in the degradation of diverse types of wastewater. Nevertheless, the relatively low power density exhibited by MFCs has imposed certain restrictions on their widespread implementation. Consequently, the need for modification of MFC technology led to the development of stack and multi-chambered MFCs. The modified variations exhibit enhanced scalability and demonstrate greater reliability in terms of power output compared to traditional MFCs. In the present review article, different components of MFCs such as anode, cathode, microbial community and membrane have been reviewed and the advancement in design for better scalability of MFCs has been addressed, emphasizing the benefits associated with stacked and multi-anodic MFCs for enhanced performance. Finally, an update of previous large-scale MFC system applications is presented.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Reprodutibilidade dos Testes , Águas Residuárias , Eletrodos
14.
Sci Total Environ ; 923: 171422, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432365

RESUMO

Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.


Assuntos
Fontes de Energia Bioelétrica , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Ferro/química , Água/química , Oxirredução , Radical Hidroxila , Eliminação de Resíduos Líquidos/métodos
15.
Bioresour Technol ; 398: 130522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437965

RESUMO

The enhancement of nitrate reduction in microbial fuel cells (MFCs) by acclimating biocathode potential was studied. An MFC system was started up, and measured by cyclic voltammetry to determine a suitable potential region for acclimating biocathode. The experimental results revealed that potential acclimation could efficiently improve denitrification performance by relieving the phenomenon of nitrite accumulation, and optimum performance was obtained at -0.4 V with a total nitrogen removal efficiency of 87.4 %. Subsequently, the characteristics of electron transfer behaviors were measured, suggesting that a positive correlation between nitrate reduction and the contribution of direct electron transfer emerged. Furthermore, a denitrification mechanism was proposed. The results indicated that potential acclimation was conducive to enhancing denitrifying enzyme activity and that the electron transport system activity could be increased by 5.8 times. This study provides insight into the electron transfer characteristics and denitrification mechanisms in MFCs for nitrate reduction at specific acclimatization potentials.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Nitratos , Nitritos , Aclimatação , Nitrogênio , Desnitrificação , Eletrodos , Reatores Biológicos
16.
Bioresour Technol ; 398: 130530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447619

RESUMO

Bio-photoelectrochemical cell (BPEC) is an emerging technology that can convert the solar energy into electricity or chemicals. However, traditional BPEC depending on abiotic electrodes is challenging for microbial/enzymatic catalysis because of the inefficient electron exchange. Here, electroactive bacteria (Shewanella loihica PV-4) were used to reduce graphene oxide (rGO) nanosheets and produce co-assembled rGO/Shewanella biohydrogel as a basic electrode. By adsorbing chlorophyll contained thylakoid membrane, this biohydrogel was fabricated as a photoanode that delivered maximum photocurrent 126 µA/cm3 under visible light. Impressively, the biohydrogel could be served as a cathode in BPEC by forming coculture system with genetically edited Clostridium ljungdahlii. Under illumination, the BPEC with above photoanode and cathode yielded âˆ¼ 5.4 mM butyrate from CO2 reduction, 169 % increase compared to dark process. This work provided a new strategy (nanotechnology combined with synthetic biology) to achieve efficient bioelectricity and valuable chemical production in PBEC.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono , Grafite , Dióxido de Carbono/metabolismo , Butiratos , Hidrogéis , Eletricidade , Luz , Eletrodos
17.
Chemosphere ; 355: 141764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521108

RESUMO

Anode modification is an effective strategy for enhancing the electrochemical performance of microbial fuel cell (MFC). However, the impacts of the modified materials on anode biofilm development during MFC operation have been less studied. We prepared a novel PDA-Fe3O4-CF composite anode by coating original carbon felt anode (CF) with polydopamine (PDA) and Fe3O4 nanoparticles. The composite anode material was characterized by excellent hydrophilicity and electrical conductivity, and the anodic biofilm exhibited fast start-up, higher biomass, and more uniform biofilm layer after MFC operation. The MFC reactor assembled with the composite anode achieved a maximum power density of 608 mW m-2 and an output voltage of 586 mV, which were 316.4% and 72.4% higher than the MFC with the original CF anode, respectively. Microbial community analysis indicated that the modified anode biofilm had a higher relative abundance of exoelectrogen species in comparison to the unmodified anode. The PICRUSt data revealed that the anodic materials may affect the bioelectrochemical performance of the biofilm by influencing the expression levels of key enzyme genes involved in biofilm extracellular polymer (EPS) secretion and extracellular electron transfer (EET). The growth of the anodic biofilm would exert positive or negative influences on the efficiency of electricity production and electron transfer of the MFCs at different operating stages. This work expands the knowledge of the role that anodic materials play in the development and electrochemical performance of anodic biofilm in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Indóis , Polímeros , Carbono/química , Fibra de Carbono , Eletricidade , Eletrodos , Biofilmes
18.
Nanoscale ; 16(15): 7559-7565, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501607

RESUMO

The high-efficiency energy conversion process in organisms is usually carried out by organelles, proteins and membrane systems. Inspired by the cellular aerobic respiration process, we present an artificial electricity generation device, aimed at sustainable and efficient energy conversion using biological components, to demonstrate the feasibility of bio-inspired energy generation for renewable energy solutions. This approach bridges biological mechanisms and technology, offering a pathway to sustainable, biocompatible energy sources. The device features a mitochondria anode and oxygen-carrying red blood cells (RBCs) cathode, alongside a sandwich-structured sulfonated poly(ether ether ketone) and polyimide composite nanochannel for efficient proton transportation, mimicking cellular respiration. Achieving significant performance with 40 wt% RBCs, it produced a current density of 6.42 mA cm-2 and a maximum power density of 1.21 mW cm-2, maintaining over 50% reactivity after 8 days. This research underscores the potential of bio-inspired systems for advancing sustainable energy technologies.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Éteres , Eletrodos , Mitocôndrias , Eritrócitos
19.
Bioresour Technol ; 396: 130404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336215

RESUMO

With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.


Assuntos
Ácidos Alcanossulfônicos , Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias , Anaerobiose , Fenômenos Físicos
20.
Talanta ; 272: 125824, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422906

RESUMO

In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Transporte de Elétrons , Glucose Oxidase/química , Oligonucleotídeos/metabolismo , Eletrodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...